

SMARTENERGY

"Solar as a feedstock?" Large Scale Solar EU

Christian Pho Duc Lisbon, 26. March 2024

The Integration Challenge Beyond a Critical RES Share

Source: GE Vernova

Beyond Electricity: Solar as Feedstock

Electrical Energy

New Solar photovoltaic plant, Benban Complex, Southeast Egypt

Renewable H2 and RFNBOs

Feedstock

Combined 304MW solar plant, green hydrogen production facility and e-methanol facility in Kassø, Aabenraa, Denmark

Replacing fossil in the energy supply is a mix of measures including sector coupling – example Swiss Energy Roadmap Scenario

Energy savings, electrification, new RES including H2 projected for CH

- Increasing demand of electricity means growing RES in Switzerland beyond hydro.
- Solar ambitions strongly increased. Role of hydrogen still under development with awaited Swiss H2 strategy.

Source: TNC, Innovations Forum Mobilitat 2023

312

Hydrogen plays an important role in hard to electrify sectors

Share of hydrogen vs electrification in 2050 final energy demand in Europe in a Net Zero Scenario

Source: BloombergNEF. Note: »Other Industry» includes low and medium temperature industrial processes. When hydrogen and electricity do not add up to 100%, the remaining share has been provided by other sources of primary energy such as bioenergy,, heat or fossil fuels

26th March 2024 7

EU Regulations apply to hydrogen <u>and</u> its derivatives, also referred to as RFNBOs

Main Hydrogen based products

- H2 as feedstock for industry (chemical, petrochemical, fertilizer, ...)
- Resulting derivatives
- New chemical processes (e.g. reductor in steel)
- High temperature processes
- Energy carrier

- Storage (short to long-term)
- Electricity through Fuel Cell

Willingness-to-Pay (WtP)

Industry and transport sector are expected to have substantial WtP for green H_2 , driven by H_2 regulation and CO_2 prices/Voluntary demand; in Europe, policy is already taking shape

Maximum indicative WtP for green H_2 in Europe¹⁾ in 2030, regulatorily & voluntarily driven

1) Analysis includes key expected H2 demand segments; several sectors not shown due to expected low H2 demand potential (e.g., rail or passenger cars); regulations on European level considered, might vary per country due to country-specific regulation Source: Roland Berger

Key WtP drivers

1. H₂-specific regulatory demand: H₂ regulations (e.g., RED II/III, ReFuel Aviation, FuelEU Maritime), incl. quotas and penalty payments, increase WtP

2. Decarbonization demand

Non-H₂ specific regulations (e.g., EU ETS) might cause use of green H₂ to avoid payments for CO_2 emissions

Towards a high-solar future: Symbiosis is Key

Electrolysers: A Perfect Match for Large Scale Solar!

Main global gas and oil flows

Reshaped and gradually substituted by hydrogen and derivatives flows based on cheap electricity resources

LNG & Pipeline in 2015 (bcm)

Asia Pacifi

Source: BP, 2015

Major flows of hydrogen and derivatives in 2050 (million tons H2 eq.)

Trade Flow

IBERIA – Abundant Solar and On-shore

Wind translate into competitive Green Hydrogen

Cost-competitive renewable electricity and green hydrogen production in Iberia [EUR/kg]

Source: Roland Berger

How much progress has been made depends on the perspective taken

Airbus path towards zero emissions

Source: Airbus at H2 Forum Berlin, Jun 2023

How much progress has been made depends on the perspective taken Aviation is a growing industry!

SAF is the future of clean aviation

Direct CO2 emission savings while using existing infrastructure

30

Sustainable Aviation Fuel (SAF)

Jet fuel produced from bio feedstock or renewable energy

CO_2 emission savings Direct CO_2 emission reductions of c. 80%

Proven technology

Globally approved by IATA¹, SAF can be blended up to 50%, 100% coming

Ready to use

Can be used in existing aircrafts without any engine adjustments and with existing fuel handling infrastructure

1) International Air Transport Association: Guidance Material for Sustainable Aviation Fuel Management, 2nd Edition, 2015

Our capabilities & green portfolio

Dedicated H₂-projects for sustainable aviation fuels

Solar as a Feedstock

Thank you!

Christian Pho Duc

Chief Technology Officer c.phoduc@smartenergy.net

SMARTENERGY Group AG Sihleggstrasse 17 8832 Wollerau SZ Switzerland

info@smartenergy.net