

Repower N: Key insights into the innovation and reliability of Tongwei's G12R Modules

Shimeng Wei Vice President, Renewables -PV & ESS & PCS TUVNORD Jason Xia Director of Module R&D Department

5 TW SOLAR

Moderated by Ben Willis Acting editor in chief

Repower N

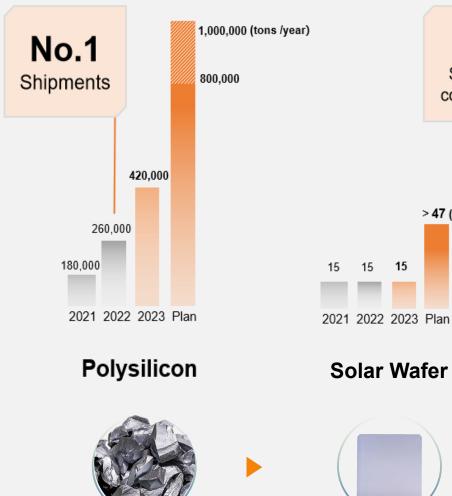
Upgrade Your Power With TONGWEI Module

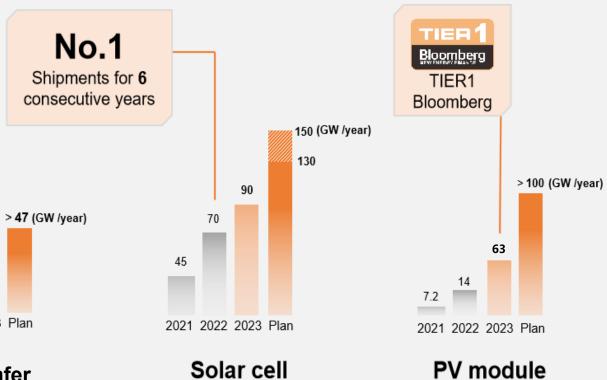
Jason Xia Tongwei's Director of Module R&D Department

About Tongwei

About Tongwei

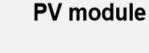
FORTUNE GLOBAL 500 |

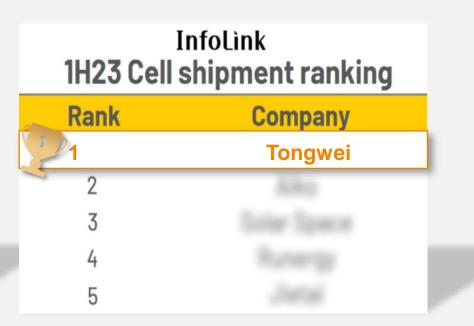




PV industry chain capacity roadmap

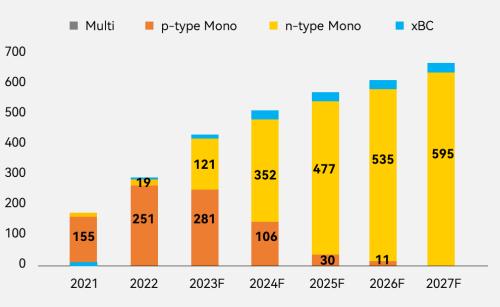
TIER1 Bloomberg



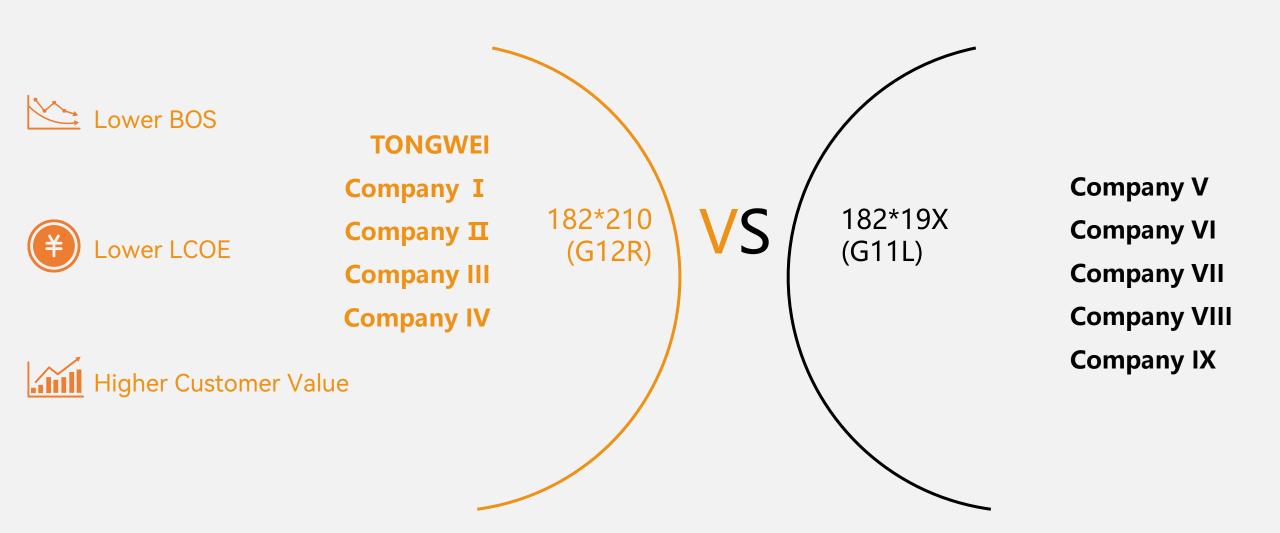

FORTUNE GLOBAL 500 |

Module Continuous rise from 2022 to 2023 H1

2 Module shipm	- Into En			le shipment ranking
Rank	Company		Rank	Company
1			1	
2			2	Long L
3			3	Trans. in Solar
4	10.000		5	
5			5	Canadian Solar
6			6	Tongwei
7		2	8	1.0
8			9	Cont Social
9	Tongwei		10	Free later



Estimated Production Capacity Output of Mono/Polycrystalline and N-type Cells Unit: GW

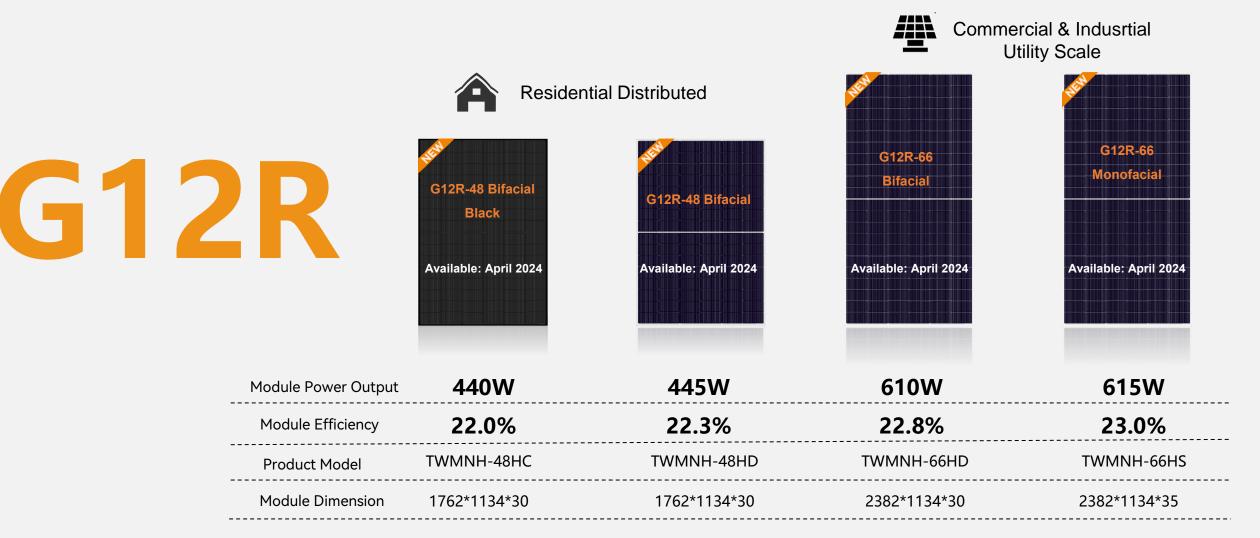

p-type Mono n-type Mono Multi xBC 1,800 1,600 1,400 1,200 1,145 1,096 1,000 1,030 979 736 800 600 94 400 14 200 380 463 508 509 501 0 2021 2022 2023F 2024F 2025F 2026F 2027F

Estimated Technology Production Capacity Output of High-efficiency Cell Unit: GW

Data Source: New Technolog Market Report_InfoLink _Aug-23

According to PV infolink's prediction, with the rapid growth of TOPCon capacity, TOPCon capacity will fully surpass PERC in the first half of 2024, and its market share will exceed 60%, making N-type products the absolute mainstream in the market.

FORTUNE GLOBAL 500



Tongwei's New Generation N-Type Products

FORTUNE GLOBAL 500 |

G12R - Tongwei Latest N-type TNC module

615W

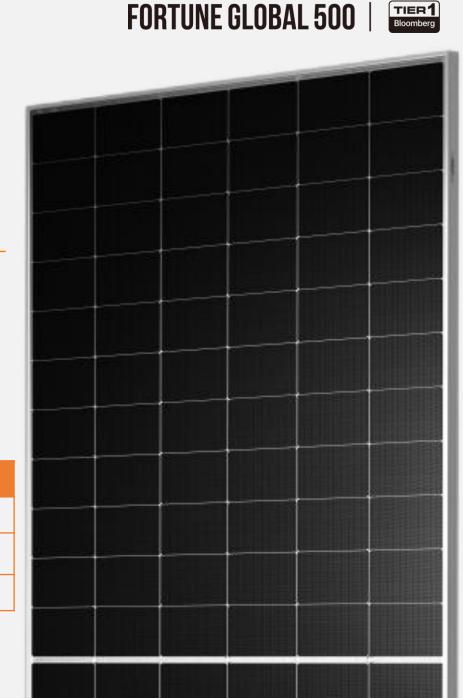
66 TNC Module

Advantages

615

Maximum Power up to 615 W

Ultra-low LID



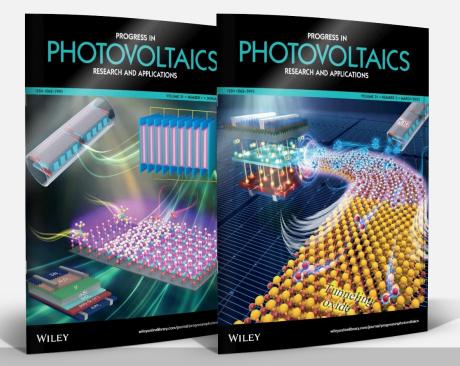
Ultra High Power Output

Better Dimension Design

Power	Up to 615W
Efficiency	Up to 23.0%
Dimensions	2382*1134*30mm (Bifacial) 2382*1134*35mm (Monofacial)
Weight	33.2kg/29.0kg

Note: module dimension has tolerances of ± 4 mm on the long side and ± 2 mm on the short side.

Advantages of the New **Generation N-type Products**


Domestic Tube-based PE-Tox & Poly TOPCon technology plays a key role in Tongwei's TNC cells

Cover of Jan. 2023 🔨

Cover of Mar. 2023 -

WILEY

Tube-based PECVD technology, developed by Nantong University/Leadmicro and Tongwei has been twice featured in the annual and monthly cover articles of *Progress in Photovoltaics* (PIP).

- China's achievements in Tube-based PE-Tox & Poly closed the industry gap.
- Cutting-edge development and industry-leading production process of TOPCon cells.

Received: 3 January 2022	Reduct 18 June 2022	Accepted: 27 June 202
DOI: 10.3002/min.3607		

RESEARCH ARTICL

aluminum oxide: Enabling record lab performance for the industry with demonstrated cell efficiencies >24%

Baochen Liae^{1,2} ⊕ | Xinyuan Wu^{2,2} ⊕ | Weiliang Wu⁴ | Changming Liu⁵ | Sheng Ma^{2,4} | Shaozhou Wang² ⊕ | Tong Xie² | Qiang Wang¹ | Zheren Du⁷ | Wenzhong Shen⁶ | Xiang Li² | Weimin Li² | Baran Hoex³

Atomic scale controlled tunnel oxide enabled by a novel industrial tube-based PEALD technology with demonstrated commercial TOPCon cell efficiencies > 24%

PHOTOVOITAICS WILEY

Baochen Liao¹² • | Weiliang Wu³ | Reuben J. Yeo⁴ | Ximyuan Wu⁵ • | Sheng Ma⁶ | Qiang Wang¹ | Yimao Wan⁷ | Xiaodong Su⁶ | Wenzhong Shen⁶ | Xiang Li² | Weimin Li² | Guoqiang Xing³ | Bram Hoex⁸

MERCOM

TOPCon Solar Cells Achieve 22.8% Efficiency With Plasma-Aided Atomic Layer Deposition

The starspan university that partners associated atoms layer dispections has the gamental for senses memory space. Sense Samo Marca associated (Dody Ren as dispect and and with region throughputs). The teams and the plasma extension of hermital segare cologication method where they and partners and the plasma extension thermital segare cologication method where they and partners with the plasma extension of hermital segare cologication method where they and partners as the second segare to the second se

pprovintelety 1.5 mm at the crystalline silicon (3) or SGs or pay-to pri-i mertance. I the online process, the selentatic clasmad to have maintened the harvef oxide thickness at 4.6, showing the importance of controlling tained oxide thickness at the atomic scale. In RECent value online

La cellule solaire TOPCon atteint une efficacité de 24,2 % grâce à la nouvelle technologie de dépôt de couche atomique assistée par plasma

Les scientifiques ont décrit la méthode proposée contine une nouvelle technique de dép de couche atomique (industrielle assistée par plasma (PEALD) de type tunnel. Selon eux, pout produim des Mins stowde de allicum (SIDIn) denses en forme de tunnel de haute

qualité, à faible coût et à haut rendement. Selon les chercheurs, cette méthode pourrait facilement être intégrée dans les s

anno con construction de la construction pour la siste par planma (PECVD) de type tunnel utilisés pou fabrication de modules solaires PERC monocristallins.

pv magazine TOPCon solar cell achieves

24.2% efficiency via new

deposition tech

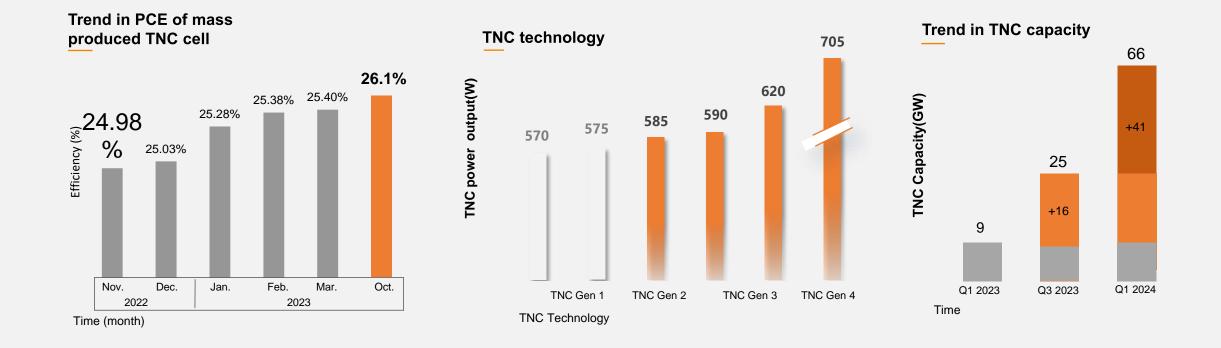
on of this film lawers in the

plasma-assisted atomic layer

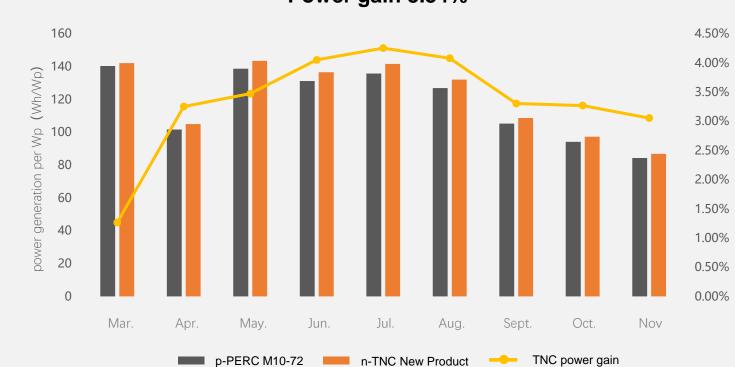
SOLAR NEWS TOPCON SOLAR CELL ACHIEVES 24.2%

EFFICIENCY VIA NEW PLASMA-ASSISTED ATOMIC LAYER DEPOSITION TECH

An international research teach has fabricated a tunnel uniter parameter contacts (TGPCorr) solar cell through a new Technique enabling the control of tunnel oxide depocition at the atomic scale.


The scientists described the proposed method as an innovative tabe-type industrial plasma-assisted atomic laye deposition (PEALD) technique. They clasmed that it can provide high-quality, dente tunnel silicon socie (SRDA) No

ey said it could be easily integrated into tube-type PECVD systems used for monocrystalline PERC solar me


nufacturing.

PCE of mass produced TNC cell > 26.1%, module power > 585W

- In December 2021, Tongwei optimized the PECVD poly route for mass production.
- At the end of October 2023, a PCE of 26.1% was achieved from mass produced TNC cells.

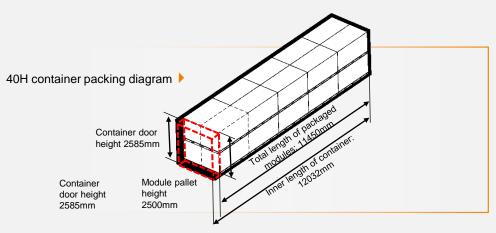
Power gain 3.34%

- Monitoring period: 2/15/2023-19/11/2023
- Field test location: Sanya (18°31N;109°56E), Hainan province, China

(%)

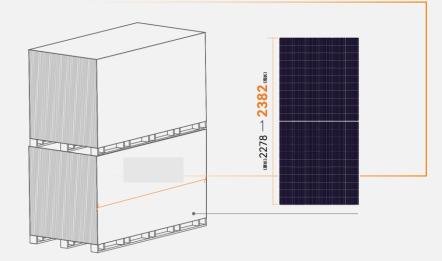
PERC

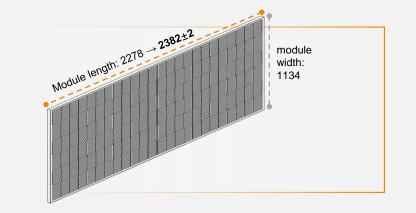
VS


gain

/er Pov

- Modules compared: New TNC bifacial module M10-72 series PERC bifacial module
- Climate type: Tropical monsoon climate
- Average temperature: 25.7°C
- Average daily irradiation: 5.35 kWh/m2

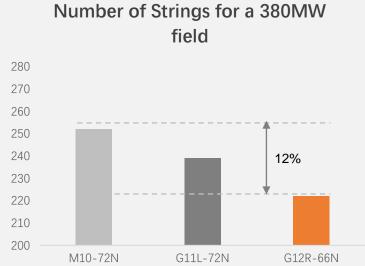

Transportation Advantage of G12R module


Design optimization to maximize packing efficiency and reduce transportation costs. By combining TNC technology with ultimate design, we bring higher product value.

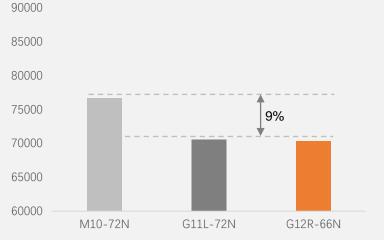
The module dimension is adapted to the container size, and the length can be

further optimized to improve container utilization to 98.5%.

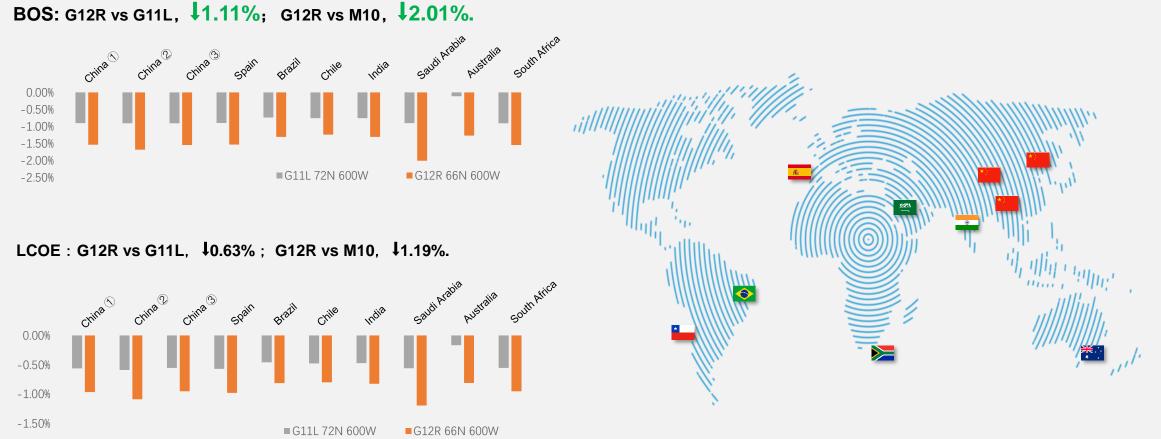
G12R-66 bifacial vs 182-72 bifacial 4% cost reduction for 40' HQ , 17.5m, 13m Flat



FORTUNE GLOBAL 500



More number of modules could be installed in a string, for 1500VDC it will be 2 pcs compared to M10-72N.


Number of inverters, cables and system components can be reduced by 12% compared to M10-72N.

System Area for a 380MW field

The power field area can be redcued by 9% compared to M10-72N.

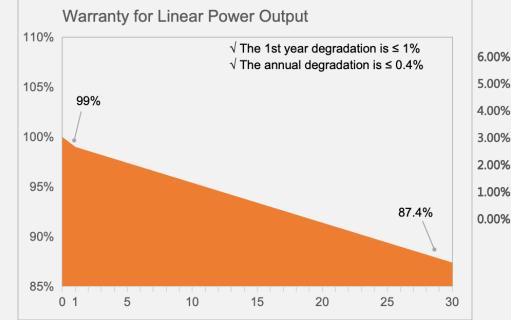
Based on calculations from 10 typical project locations, BOS and LCOE comparison shows that G12R brings higher system value.

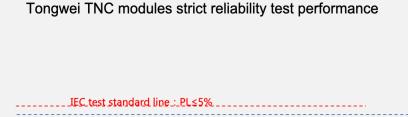
FORTUNE GLOBAL 500

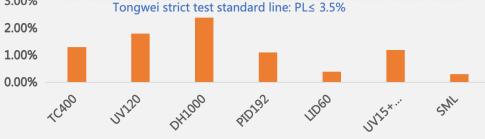
TIER1 Bloomberg

to see the second

*Using TOPCon M10-72 Bifacial Module as BSL


FORTUNE GLOBAL 500 |




Warranty for Material: 15 years for G12R-48 modules, and 12 years for G12R-66 modules.

Warranty for Linear Power Output: 30 years

Tongwei set up 14 sustainable development goals for ESG, to achieve carbon neutrality by 2030.

- 1. 100% coverage of sustainable investigation and assessment for module suppliers
- 2. Company's water-saving target: 3.594 million tons
- 3. Plan to initiate 38 ESG and climate action projects
- 4. Female representation on the board of directors should be no less than 30%
- 5. Achieved a 19.5% reduction in carbon intensity compared to 2020
- 6. Annual renewable energy generation exceeds 9 billion kWh
- 7. Annual zero personal injury accidents

- 8. 100% product qualification rate annually
- 9. 100% annual supplier commitment rate for integrity
- 10. Annually, no fire, explosion, or poisoning incidents
- 11. Zero occurrence of quality and safety incidents annually
- 12. 100% customer complaint resolution rate annually
- 13. 100% annual internal anti-corruption audits and key position employee training
- 14. Achieved operational carbon neutrality

To achieve operational carbon neutrality by 2030

PV CHANGES THE WORLD

TONGWEI PV R&D CENTER

TUVNORD

Performance & reliability evaluation

of n-type high-efficiency P modules

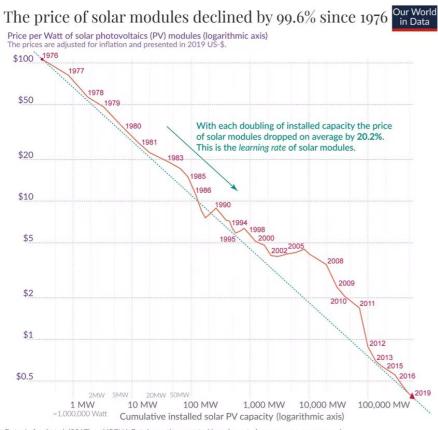
Shimeng Wei | BF Renewables | 23.01.2024

Topics

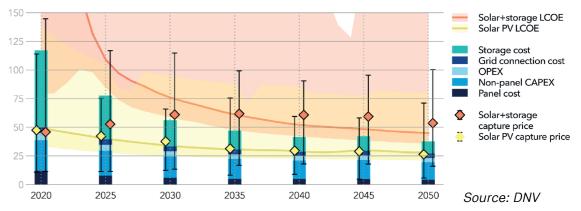
Performance & reliability evaluation of n-type high-efficiency PV modules

- 01 Background
- 02 Performance evaluation
- 03 Characterization
- 04 Reliability evaluation
- 05 Conclusion

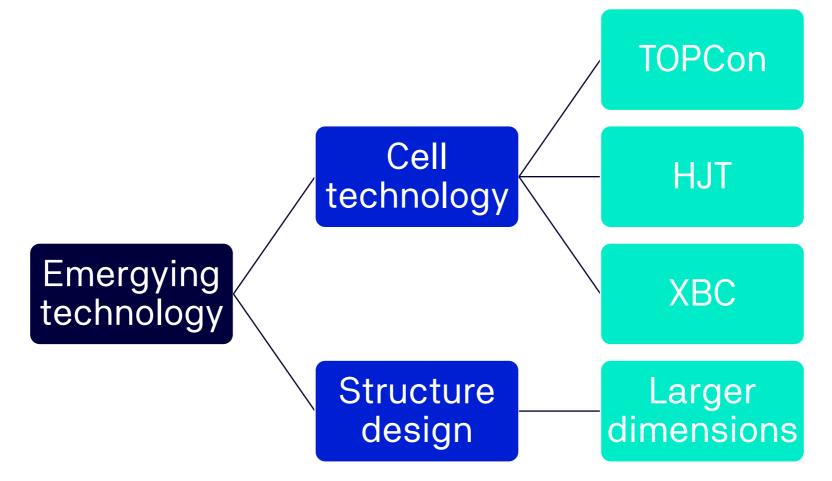
Topics


Performance & reliability evaluation of n-type high-efficiency PV modules

01 Background


- 02 Performance evaluation
- 03 Characterization
- 04 Reliability evaluation
- 05 Conclusion

Global solar LCOE and capture price


Units: USD/MWh

Data: Lafond et al. (2017) and IRENA Database; the reported learning rate is an average over several studies reported by de La Tour et al (2013) in Energy. The rate has remained very similar since then. OurWorldinData.org – Research and data to make progress against the world's largest problems. by the author Max Roser

Emerging technology

Topics

Performance & reliability evaluation of n-type high-efficiency PV modules

- 01 Background
- 02 Performance evaluation
- 03 Characterization
- 04 Reliability evaluation
- 05 Conclusion

Location: Yinchuan, China N 38°27′ 55.38″; E 106°6′ 7.90″

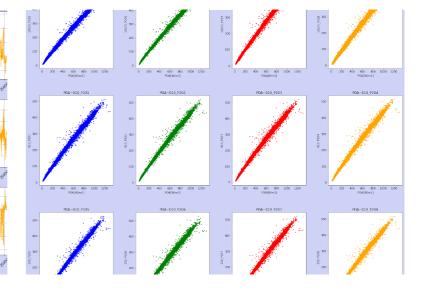
Abundant sunlight for more than 3200h / year

Typical xerothermic climate at average altitude of 1100m

Solar spectrum is highly consistent with AM1.5 spectrum

Equipped condition for PV monitoring and testing

Python data analysis tool

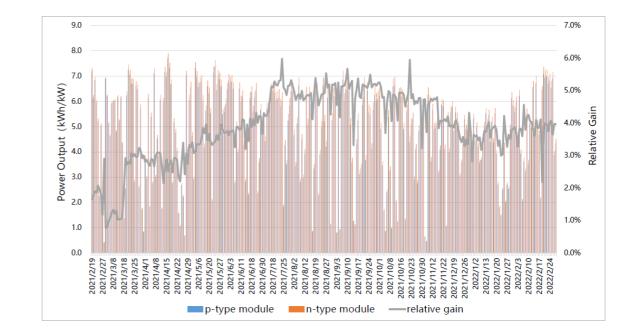

Name

- .ipynb_checkpoints
- DF_output
- 📕 farm_data
- CleanEvents
- Combine files in row direction.ipynb
- Mea for Akcome Project_MAP.ipynb
- Raw data process_filter temp.ipynb
- Raw data process_Summary.ipynb

🛃 reclib

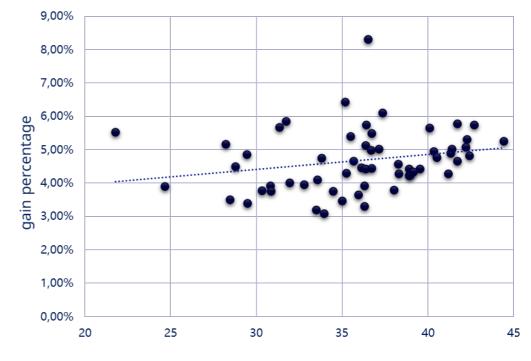
Based on Python data analysis tool, efficiently perform raw data processing, data quality inspection, problem location analysis, and result output

Distribution of module output power with irradiation



Distribution of differences between module operating temperature and average temperature

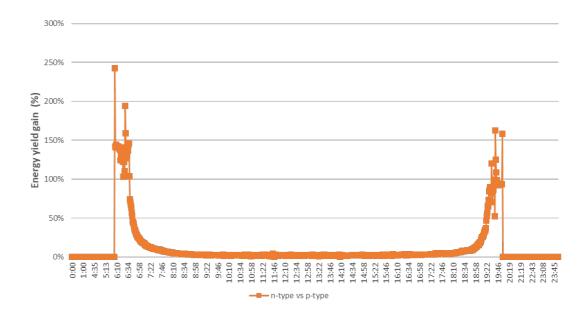
Power generation


Compared with PERC modules, n-type TOPCon modules cumulative kWh/kW power generation difference is +3.93%.

Temperature coefficienct

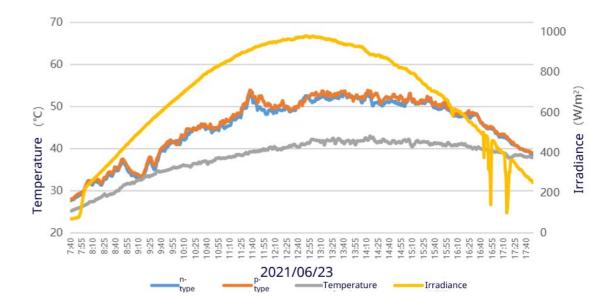
Compared with PERC modules, the kWh/kW power generation gain of n-type TOPCon modules also shows an increasing trend when the module temperature increases, which can reflect the temperature coefficient advantage of n-type TOPCon modules.

module operating temperature

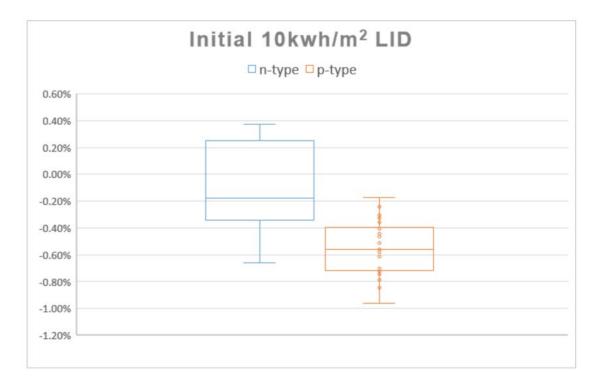


10

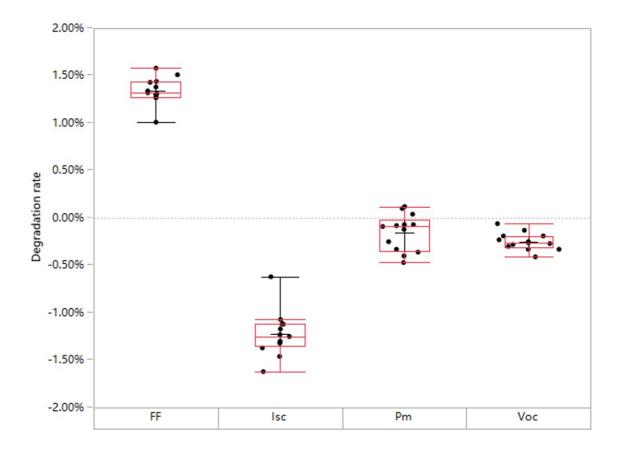
Low-irradiance behaviour

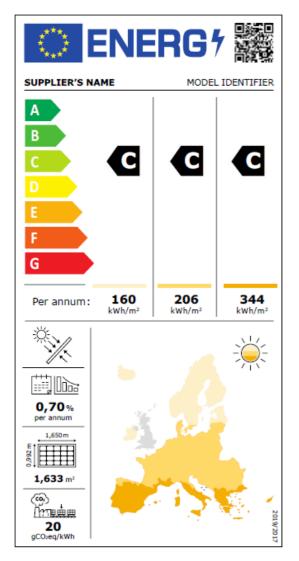

Compared with PERC modules, n-type TOPCon modules have more obvious power generation in the early morning and nightfall.

Operation temperature


Compared with PERC modules, the average operating temperature of n-type TOPCon modules is about 1°C lower.

LID


LID (10kWh/m²)	Min	Max	Ave
n-type Topcon	+0.37%	-0.66%	-0.08%
PERC	-0.17%	-0.96%	-0.55%



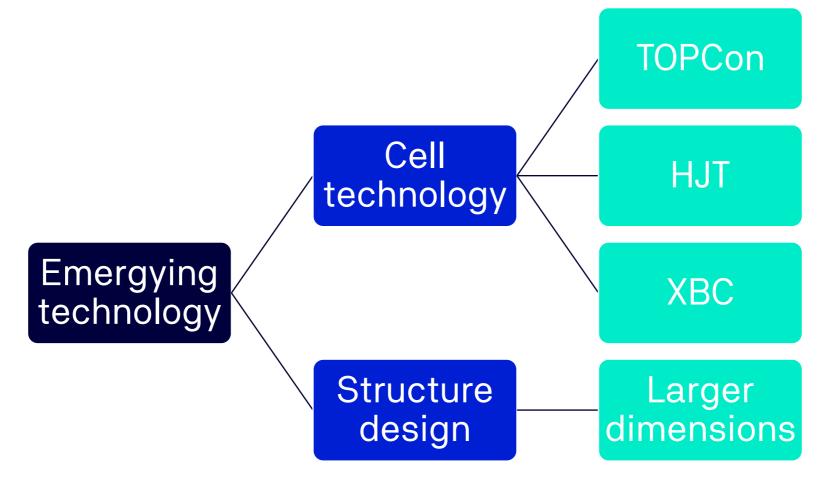
LID

After more than one year of outdoor grid-connected power generation, for n-type TOPCon modules, the average attenuation of all modules in the entire string is 0.15%.

Eco design & energy label

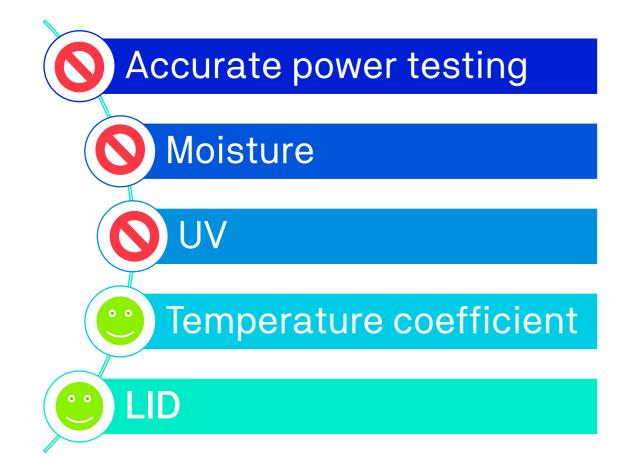
	Ener	gy Efficiency Index (EEI _M), kV	Vh/m²
Energy Efficiency Class	Subtropical arid	Temperate coastal	Temperate continental
Α	EEI _M > 566	EEI _M > 257	EEI _M > 330
В	$496 < EEI_M \le 566$	$226 < \text{EEI}_{M} \le 257$	291 < EEI _M ≤ 330
С	$426 < \text{EEI}_{M} \le 496$	195 < EEI _M ≤ 226	$252 < \text{EEI}_{M} \le 291$
D	$356 < \text{EEI}_{M} \le 426$	164 < EEI _M ≤ 195	213 < EEI _M ≤ 252
E	$310 < \text{EEI}_{M} \le 356$	140 < EEI _M ≤ 164	$182 < \text{EEI}_{M} \le 213$
F	$265 < \text{EEI}_{M} \le 310$	117 < EEI _M ≤ 140	151 < EEI _M ≤ 182
G	EEI _M ≤ 265	EEI _M ≤ 117	EEI _M ≤ 151

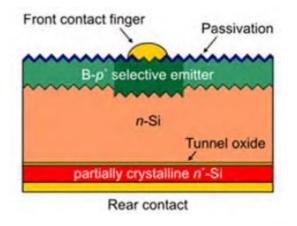
		Input module effic	iency - from labor	atory measurement	ts				Climate Type	Subtropical arid
					emperature				Moduletype	182 p_type
		Irradiance	15	25	50	75	Input the tes	Input the test module Uc		1167.7
		100	20.90	20.16	18.31	16.42	_			
PERC		200	21.42	20.70	18.90	17.07	Uc	33	Pmax,STC (W)	545
		400	21.79	21.09	19.35	17.57			Hp (kWh/m ²)	2295.5
		600	21.88	21.20	19.49	17.74				
		800	21.87	21.20	19.50	17.78			CSER	93.3%
	Input parameters	1000 1100	21.79 21.74	21.13 21.08	19.45 19.41	17.74 17.71			EE I _M	451.2
	a _r 0.07491								Energy Efficiency Class	С
	a, 0.07491 β 20 Define same ar	Input module effic	iency - from labora		ts emperature		Input the te	st module Uc	Energy Efficiency Class Climate Type Module type	C Subtropical arid 182 n_type
	β 20 Define same ar		iency - from labora 15			75	Input the te	st module Uc	Climate Type	Subtropical arid
	β 20 Define same ar	Irradiance	15 21.89	Module te 25 21.18	emperature 50 19.35	17.47	Input the te	st module Uc 35	Climate Type Module type Emod,year (kWh)	Subtropical arid 182 n_type 1286.6
TOPCon	β 20	Irradiance 100 200	15 21.89 22.46	Module te 25 21.18 21.76	50 19.35 19.98	17.47 18.15			Climate Type Module type	Subtropical arid 182 n_type
TOPCon	β 20 Define same ar	Irradiance 100 200 400	15 21.89 22.46 22.83	Module te 25 21.18 21.76 22.14	50 19.35 19.98 20.42	17.47 18.15 18.64	Uc	35	Climate Type Module type Emodyear (WVh) Pmax_STC (W)	Subtropical arid 182 n_type 1286.6 570
TOPCon	β 20 Define same ar	Irradiance 100 200 400 600	15 21.89 22.46 22.83 22.91	Module te 25 21.18 21.76 22.14 22.25	50 19.35 19.98 20.42 20.54	17.47 18.15 18.64 18.79	Uc		Climate Type Module type Emod,year (kWh)	Subtropical arid 182 n_type 1286.6
TOPCon	β 20 Define same ar	Irradiance 100 200 400 600 800	15 2189 2246 2283 2291 2287	Module te 25 21.18 21.76 22.14 22.25 22.21	50 19.35 19.98 20.42 20.54 20.53	17.47 18.15 18.64 18.79 18.80	uc TOPCon h	35 ave better	Climate Type Module type Emodyear (WVh) Pmax_STC (W)	Subtropical arid 182 n_type 1286.6 570
TOPCon	β 20 Define same ar	Irradiance 100 200 400 600	15 21.89 22.46 22.83 22.91	Module te 25 21.18 21.76 22.14 22.25	50 19.35 19.98 20.42 20.54	17.47 18.15 18.64 18.79	Uc	35 Nave better	Climate Type Module type Emod.year (kWh) Pmax.STC (W) Hp (kWh/m ²)	Subtropical arid 182 n_type 1286.6 570 2295.5


Topics

Performance & reliability evaluation of n-type high-efficiency PV modules

- 01 Background
- 02 Performance evaluation
- 03 Characterization
- 04 Reliability evaluation
- 05 Conclusion




Emerging technology

Characterizations of n-type modules with new cell technology

Production efficiency 23.9%-24.6% Theoretical efficiency 27.5%~28.5%

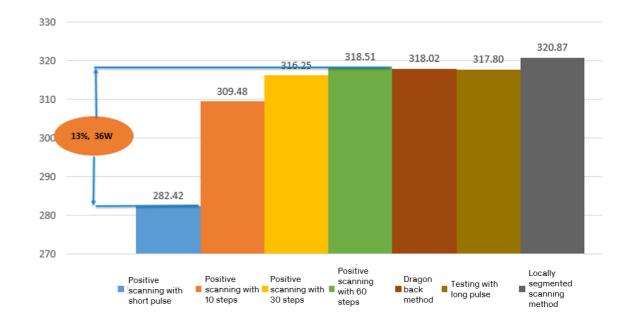
Characterizations of n-type modules with larger dimensions

Installation	Larger	M2 210 156,75	G1 92 82 92 82 92 92 92 92 92 92 92 92 92 92 92 92 92	M6 223 166	M10 241 182	210
Packaging & transportation	dimensions					
Mechanical properties		Area: 24432mm² (base line)	Area: 25199mm² (3.14% ↑)	Area: 27416mm² (12.21% ↑)	Area: 33011mm² (35.11% ↑)	Area: 44096mm ² (80.48% †)
Electrical safety	PV module	156.75 (144 half-cut)	158.75 (144 half-cut)	166 (144 half-cut)	182 (156 half-cut)	210 (132 half-cut)
	Size (mm)	2007x992	2031x1008	2117x1052	2465x1134	2384x1303
	Pmax (W)	390	420	475	620	720
	lsc (A)	9.79	10.70	11.46	14.30	17.74
	Voc (V)	49.28	48.74	51.25	55.34	49.20

G12

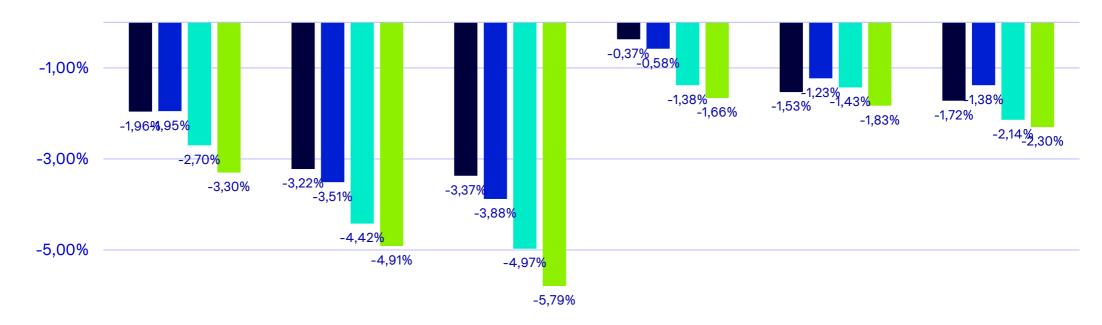
Topics

Performance & reliability evaluation of n-type high-efficiency PV modules


- 01 Background
- 02 Performance evaluation
- 03 Characterization
- 04 Reliability evaluation
- 05 Conclusion

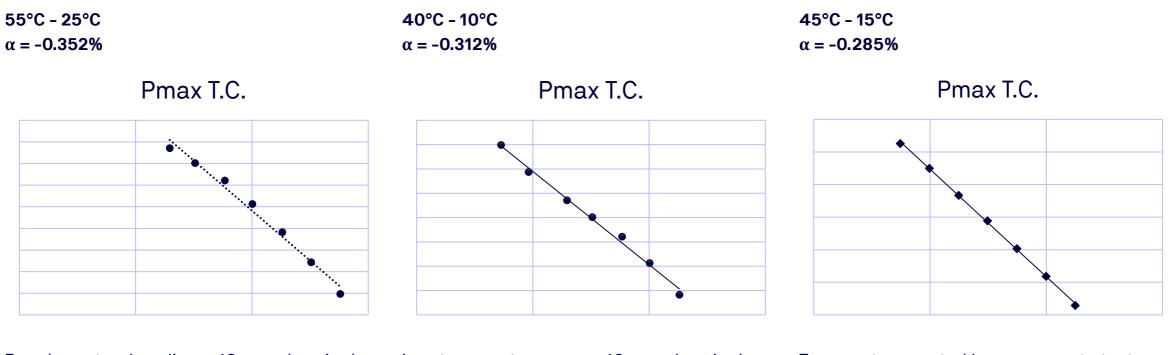
Accurate power testing

The internal capacitance leads to a strong hysteresis effect in I–V measurements. This hysteresis introduces a significant error in measurement results.


The test results of the multi-flash and DB methods are basically consistent with those of the long pulse simulator.

Moisture

Damp-heat test simulation



-7,00%						
-7,00%	DH1000	DH2000	DH3000	TC200	TC400	TC600
n-type double glass	-1,96%	-3,22%	-3,37%	-0,37%	-1,53%	-1,72%
n-type double glass	-1,95%	-3,51%	-3,88%	-0,58%	-1,23%	-1,38%
n-type single glass	-2,70%	-4,42%	-4,97%	-1,38%	-1,43%	-2,14%
n-type single glass	-3,30%	-4,91%	-5,79%	-1,66%	-1,83%	-2,30%

Accurate power testing

Temperature co-efficient

Regular natural cooling + 10ms pulse single flash

Low temperature area + 10ms pulse single flash

Temperature control box + accurate test

Installation

Installation method

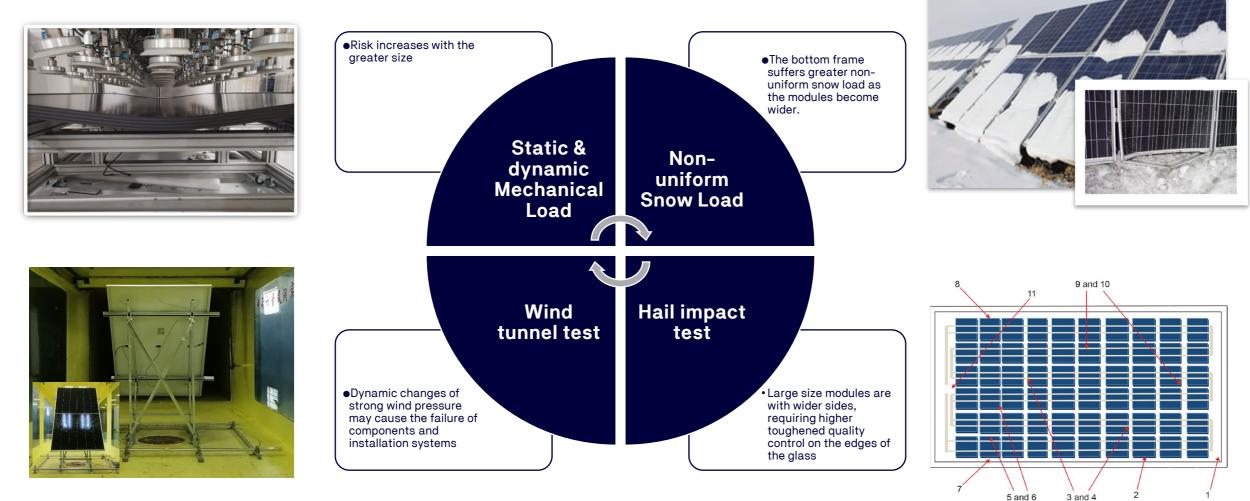
- The position of mounting holes
- The amount of mounting holes
- Tracker or Fixed bracket

Extreme climate

• Rainy, snowy, hailing, windy weather

Packaging & transportation

The weight and size of the whole package of largersize modules are greatly increased, raising up the risk in transportation.


For larger-dimension modules, the tray and packaging methods is highly recommended to be strengthened.

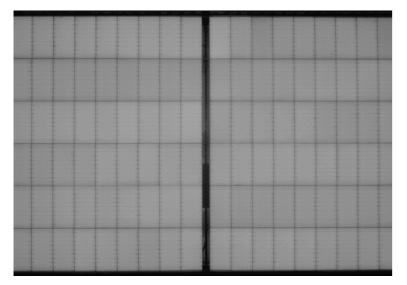
Random vibration testing	Dynamic mechanical load
Inclined impact test	Thermal cycles
Rotational edge drop test	Humidity freeze
Vertical shock test	Mechanical load
Horizontal impact test	

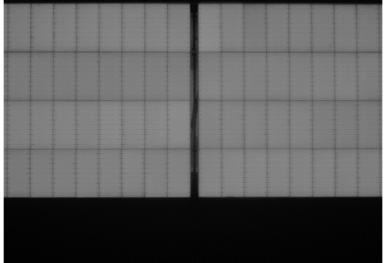
Mechanical properties

Electrical safety

Current-related tests for bifacial PV modules

When the temperature of installation environment is high enough (e.g. dessert climate), the installation method is difficult for heat dissipation (e.g. double-skin curtain wall BIPV), higher current carrying capacity is required for bypass-diode in larger-size modules.

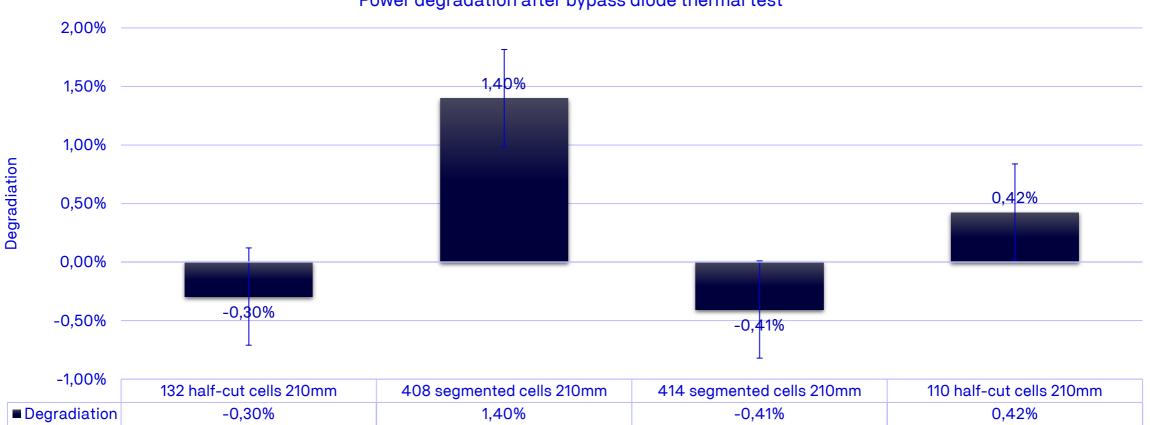

	166mm (144 half-cut)	182mm (156 half-cut)	210mm (132 half-cut)		
Isc-BSI (A)	13.87	17.30	21.47		
Imp-BSI (A)	12.52	16.24	20.57		
MQT 18 Bypass diode testing: 1.4*Isc-BSI at 75°C 1hour, according to IEC TS 63126 level 2					
Applied current (A)	27.19	33.91	42.08		
MST 26 Reverse current overload test: 1.35*fuse rating 2hours, according to IEC 61730-2					
Applied current (A)	27.00	40.50	47.25		
MQT 11 Thermal cycling test: Imp-BSI, according to IEC 61215-2					
Applied current (A)	12.52	16.24	20.57		


Electrical safety

Thermal cycling test

Normal operation

Bypass diode fails


Junction box melt after thermal cycling

Electrical safety

Bypass diode thermal test

Power degradation after bypass diode thermal test

Topics

Performance & reliability evaluation of n-type high-efficiency PV modules

- 01 Background
- 02 Performance evaluation
- 03 Characterization
- 04 Reliability evaluation
- 05 Conclusion

Conclusion

- LCOE continues to decrease, which is becoming the most important factor of global PV projects.
- n-type PV modules with larger dimensions is an emerging technology.
- Outdoor performance test shows the power generation advantages of n-type PV modules.
- Risks come along with the benefits of highefficiency PV modules with larger dimensions and larger current, solutions are already available and therefore additional care need to be taken.

TUVNORD

Do you have questions?

Shimeng Wei T.: +49 (0)160 888 5840 M.: swei@tuev-nord.de

tuev-nord.de